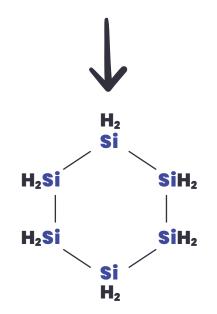
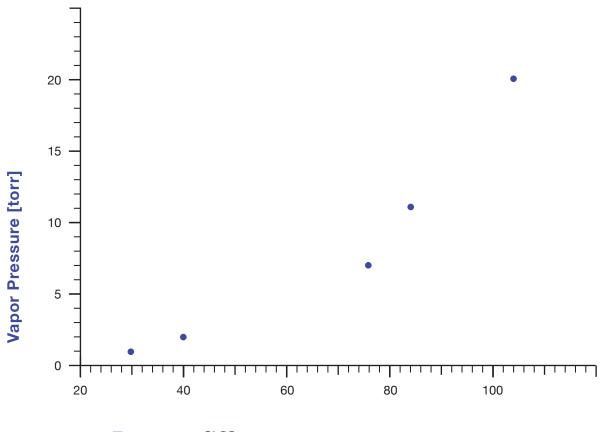
OTCQB: CRTG | thecoretecgroup.com

CYCLOHEXASILANE: PHYSICAL PROPERTIES & NANOMATERIAL GROWTH


Ramez Elgammal, Ph.D., VP of Technology

CYCLOHEXASILANE DETAILS

PROPERTY	VALUE	
Melting Point	18 °C	
Boiling Point	226 °C (80 °C @ 10 torr)	
Density	0.97 g/cm ³	
Stability	> 12 months	
Purity	> 98%	


Inexpensive raw commodity chemicals (e.g. HSiCl₃) High atom economy, high yielding

Contact Us: The Coretec Group, Inc. • thecoretecgroup.com • (866) 916-0833 • info@thecoretecgroup.com 333 Jackson Plaza, Suite 1200, Ann Arbor, Michigan 48103

Coretec products or brands denoted with (8) or TM are registered trademarks or trademarks of The Coretec Group, Inc. (2021 The Coretec Group, Inc. All rights reserved.

CYCLOHEXASILANE VAPOR PRESSURE AS A FUNCTION OF TEMPERATURE

Tempature [°C]

Contact Us: The Coretec Group, Inc. • thecoretecgroup.com • (866) 916-0833 • info@thecoretecgroup.com 333 Jackson Plaza, Suite 1200, Ann Arbor, Michigan 48103

Coretec products or brands denoted with ® or TM are registered trademarks or trademarks of The Coretec Group, Inc. ©2021 The Coretec Group, Inc. All rights reserved.

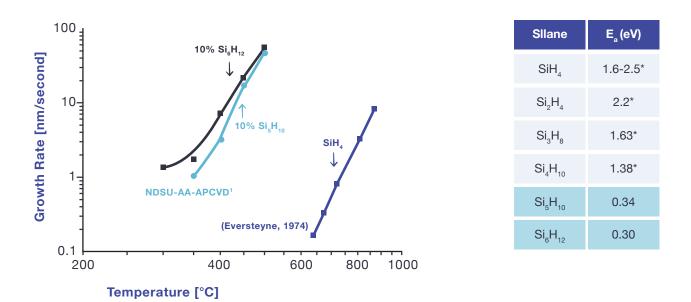
BOND ENTHALPY COMPARISON

CHEMICAL NAME	CHEMICAL STRUCTURE	Si-Si BOND (kj/mol)	Si-H BOND (kj/mol)
Cylohexasilane (CHS)	$H_{2}Si$ $H_{2}Si$ SiH_{2} $H_{2}Si$ SiH_{2} $H_{2}Si$ SiH_{2}	262	343 —
Hexasilane	$H_{2} H_{2} H_{2}$ $H_{3}Si Si Si Si H_{2}$ $H_{2} H_{2}$	277	354
neo-Pentasilane	SiH ₃ H ₃ Si — Si — SiH ₃ SiH ₃	268	357
Disilane	H3Si — SiH3	289	364
Monosilane	SiH₄	-	372

Lower BDE Deposition: Lower T & Faster

Contact Us: The Coretec Group, Inc. • thecoretecgroup.com • (866) 916-0833 • info@thecoretecgroup.com 333 Jackson Plaza, Suite 1200, Ann Arbor, Michigan 48103

Coretec products or brands denoted with (8) or TM are registered trademarks or trademarks of The Coretec Group, Inc. (2021 The Coretec Group, Inc. All rights reserved.


AEROSOL ASSISTED CVD OF SI THIN FILMS

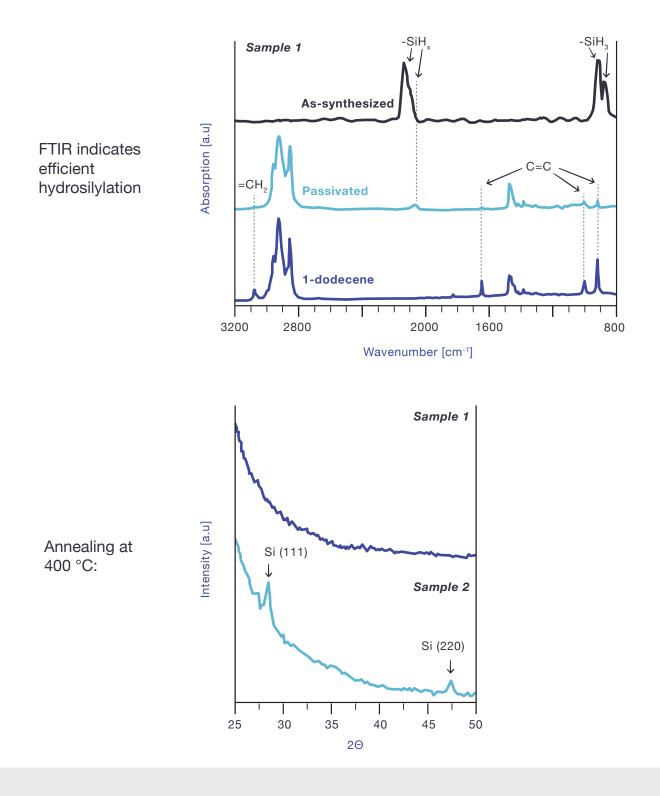
AA-APCVD Characteristics:

- Aerosolized liquid precursor
- Atmospheric pressure
- Continuous and scalable (R2R)
- High deposition efficiency at low thermal budget

Liquid Precursor Formulations For:

- Intrinsic silicon
- n and p doped silicon
- Low K dielectrics (SiOCN)
- Si-C compositions
- SiNx

Deposition rates and activation energies of hydrosilanes (Si₆H₁₂ has lowest E_a of known silanes)

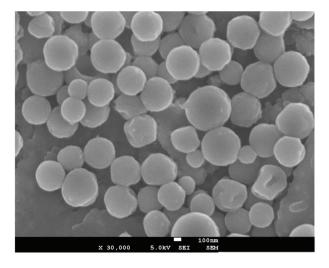

Comparison Of Si Film Deposition Techniques

	AA-APCVD w/ Si ₆ H ₁₂ (exp.)	LPCVD w/ SiH₄ (lit.)	PECVD w/ SiH₄ (lit.)
Growth rate (nm/sec)	~17 (un-optimized)	0.01 to 1	1–5
Precursors	Soluble Solids/Liquids	Pyrophoric/Toxic Gases	Pyrophoric/Toxic Gases
Temperature	300 – 500+ °C	500 – 1000 °C	25 – 450 °C
Photosensitivity	10³ – 10⁴ (a-Si:H)	$10^{2} - 10^{7}$ (a-Si:H and c-Si)	10 ³ – 10 ⁶ (a-Si:H)
Si Dep. eff.	~40% (un-optimized)	up to ~100%	~15% (Established)

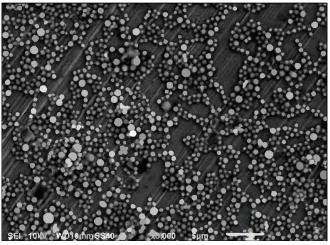
Contact Us: The Coretec Group, Inc. • thecoretecgroup.com • (866) 916-0833 • info@thecoretecgroup.com 333 Jackson Plaza, Suite 1200, Ann Arbor, Michigan 48103

Coretec products or brands denoted with ® or TM are registered trademarks or trademarks of The Coretec Group, Inc. ©2021 The Coretec Group, Inc. All rights reserved. 1. https://www.sciencedirect.com/science/article/abs/pii/S0040609015006112

CONTROL OF SURFACE CHEMISTRY & CRYSTALLINITY

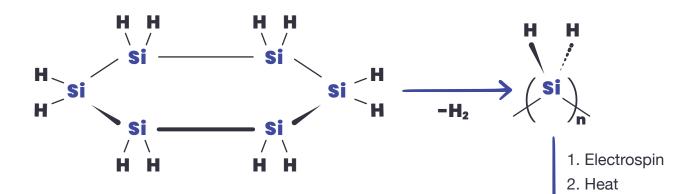


Contact Us: The Coretec Group, Inc. • thecoretecgroup.com • (866) 916-0833 • info@thecoretecgroup.com 333 Jackson Plaza, Suite 1200, Ann Arbor, Michigan 48103

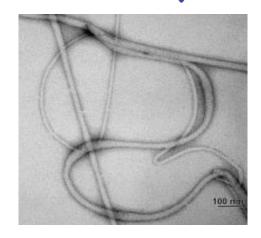

SOLUTION/EMULSION POLYMERIZATION

CHS spontaneously or inductively forms nano-sized domains in select liquid systems such as microemulsions which can be processed to generate silicon nanostructures.

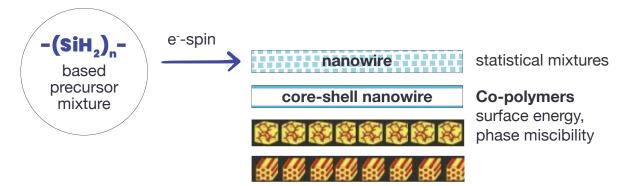
Generation of these nanostructures is enabled by the ability to transform CHS into structurally robust polysilane colloids at RT using UV irradiation or chemical initiators.


SEM image of polysilane colloids generated by micro-emulsion polymerization of Si₆H₁₂ using UV irradiation.

SEM image of a-Si colloids generated by micro-emulsion polymerization of Si_6H_{12} and heat treatment at 400 °C.


Contact Us: The Coretec Group, Inc. • thecoretecgroup.com • (866) 916-0833 • info@thecoretecgroup.com 333 Jackson Plaza, Suite 1200, Ann Arbor, Michigan 48103

ELECTROSPUN SI NWS FROM CHS-BASED INKS



Si nanofibers as Li Ion Battery Anode

- 1. >10-fold increase in energy density compared to graphite
- 2. d<100 nm, amorphous structure
- 3. scalable process
- 4. low cycle loss

Potential for New Copolymer Physical Chemistry

Contact Us: The Coretec Group, Inc. • thecoretecgroup.com • (866) 916-0833 • info@thecoretecgroup.com 333 Jackson Plaza, Suite 1200, Ann Arbor, Michigan 48103

Coretec products or brands denoted with (B) or TM are registered trademarks or trademarks of The Coretec Group, Inc. (D) 2021 The Coretec Group, Inc. All rights reserved.

ADVANTAGES OF SI6H12 AS A PECVD PRECURSOR

- CHS molecule consists of 6 Si atoms which can be simultaneously delivered into the PECVD chamber thus enabling higher deposition rate compared to traditional monosilane.
- Our experiments have shown that good quality a-Si:H films can be fabricated. This finding allows to partially eliminate a costly multistage purification process, thus making CHS a more cost efficient precursor than traditional silanes.
- 3. CHS has a low vapor pressure at room temperature (0.3 torr), which makes all operations with this precursor much safer than similar operations with gaseous silanes.
- 4. CHS **does not require any dilution** when used (gaseous silanes are diluted with He). This characteristic significantly widens Si delivery and hydrogen dilution ranges.

Contact Us: The Coretec Group, Inc. • thecoretecgroup.com • (866) 916-0833 • info@thecoretecgroup.com 333 Jackson Plaza, Suite 1200, Ann Arbor, Michigan 48103

OTCQB: CRTG | thecoretecgroup.com

FOR MORE INFORMATION PLEASE CONTACT **RAMEZ ELGAMMAL** RELGAMMAL@THECORETECGROUP.COM

